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Random and systematic dilutions of synaptic connections in a neural network
with a nonmonotonic response function
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It has been observed that the dilution of synaptic connections in neural networks has relevance to biology
and applicability to engineering. From this viewpoint, the effects of synaptic dilution on the retrieval perfor-
mance of an associative memory model with a nonmonotonic response function are investigated through the
self-consistent signal-to-noise analysis. Compared with a fully connected neural network, for which a non-
monotonic response function is known to achieve a large enhancement of storage capacity and the occurrence
of the superretrieval phase leads to an errorless memory retrieval, the nonmonotonic neural network with a
random synaptic dilution undergoes a considerable decrease in storage capacity. It is shown, however, that by
employing a systematic dilution technique characterized by a nonlinear learning rule, in which larger connec-
tions are retained, it is possible to significantly reverse the undesirable rapid reduction in storage capacity. It is
also proved that the superretrieval phase is structurally unstable against the dilution of synapses.
@S1063-651X~98!04801-6#

PACS number~s!: 87.10.1e, 89.70.1c, 05.90.1m
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INTRODUCTION

Single neurons display monotonic increases in firing ra
as input currents are increased. However, there are m
sources of inhibition in biological neural networks, and t
effective neural processing units, which may consist o
small number of excitatory and inhibitory neurons, possi
exhibit more complicated response profiles to exter
stimuli. To explore the potential abilities of such neural sy
tems in biological information processing, nonmonotonic
sponse functions were introduced to associative mem
neural networks@1,2#. In the models, an output of each pr
cessing unit, or ‘‘neuron,’’ decreases~increases! for rela-
tively large~small! values of membrane potential rather th
showing a sigmoidal response profile.

Several noteworthy features were found in the nonmo
tonic neural networks, for which the existence of a Lyapun
function ensuring network stability is not guaranteed. Wh
standard Hebbian learning is used to define a connec
matrix with random memory patterns, the storage capa
increases to about three times@2,3# that of the case where
step function@4# or a sigmoidal response function is us
@4–6#. Such an enhancement also occurs for sparsely co
memory patterns@7#. If synaptic connections are optimall
learned, the storage capacity is enhanced by a similar
meral factor@8# compared with an optimally learned mon
tonic neural network@9#. Furthermore, in a certain equilib
rium state termed ‘‘superretrieval phase,’’ the inputs~or
local fields! of individual neurons do not suffer from nois
components@2,10# even under extensive memory loading.
571063-651X/98/57~2!/2095~9!/$15.00
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the monotonic neural networks, the noise arising from
interference by nonretrieved memory patterns prevents er
less memory retrieval. The occurrence of the superretrie
phase is robust against the introduction of biased mem
patterns, asymmetric synaptic connections memorizing
presynaptic and postsynaptic activity, and the profile
transfer functions including positive-valued ones@11#. How-
ever, the extent of the superretrieval phase in the phase
grams depends significantly on the profiles of nonmonoto
response functions@12#. Nonmonotonic neurons, which ar
responsible for a considerable reduction in the number
spurious states, are also useful for the retrieval of temp
sequences@13# and practical applications to real-world pa
tern recognition by an electrically implemented neural n
works @14#.

Since information about a memory pattern is retained
many synaptic connections, the performance of associa
memory models is robust against the damage to neural
cuits. In fact, the problems of synaptic dilution and nonline
learning rules such as clipping of synapses have been stu
for monotonic response functions in stochastic Ising s
networks, including the zero-temperature case@15–17#. If
synaptic connections are eliminated at random while the c
nections’ symmetry is maintained, the storage capacity dr
almost linearly with the number of eliminated synapses, i
plying that a neural network can still work as an efficie
associative memory@15#. Diluting synapses asymmetricall
was investigated analytically only in the case of extreme
lution @16,18#.

It is tempting to assume that the behavior of nonmon
2095 © 1998 The American Physical Society
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tonic neural networks with synaptic dilution resembles t
of monotonic neural networks, and accordingly their supe
abilities would be expected to endure despite such dam
In this paper, we analytically and numerically examine h
the dilution of synaptic connections affects the performa
of a nonmonotonic neural network. We employ the se
consistent signal-to-noise analysis~SCSNA! to investigate
the equilibrium properties of the neural network. Contrary
the above expectation, the results show that the exce
abilities exhibited by nonmonotonic transfer functions suf
considerably from a random dilution compared with the p
formance of a randomly diluted monotonic neural netwo
In particular, the superretrieval phase is proved to be st
turally unstable for any type of synapse dilution. Cons
quently, we show how the deterioration of the retrieval ab
ties of nonmonotonic neural network can be countered
retaining large synaptic connections in the dilution.

SCSNA for diluted neural networks

The SCSNA starts from the fixed-point equations for t
dynamics of anN-neuron network:

hi5(
j Þ i

N

Ji j F~hj !, i 51, . . . ,N, ~1!

or more conveniently

xi5FS (
j Þ i

N

Ji j xj D , i 51, . . . ,N, ~2!

wherehi andxi5F(hi) are the local field of thei th neuron
at equilibrium and output activity of neuroni , respectively.
Ji j stands for the synaptic connection from neuronj to i . In
this study, the response function is assumed to be given

F~x!5H 1, 0,x,u
21, 2u,x,0
0, uxu.u

~3!

for which the properties of a fully connected nonmonoto
neural network were extensively studied@2#. The parameter
u can be regarded as a cutoff parameter for the memb
potential. Random memory patterns are generated accor
to the probability distribution

P~j i
m561!5 1

2 . ~4!

In the following, we derive a set of equations for order p
rameters when the synaptic connections are randomly
luted. This analysis is valid for a generic response funct
other than that given in Eq.~3!.

Random dilution

The synaptic connections are given by

Ji j 5
Apci j

Nc
Ti j , ~5!

whereTi j is a conventional Hebbian connection matrix
t
r
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Ti j 5
1

Ap
(
m51

p

j i
mj j

m , ~6!

andci j takes its value as 0 or 1 with probabilities

P~ci j 51!512P~ci j 50!5c ~0<c<1!, ~7!

ci j 5cji ~8!

for symmetric dilution. For asymmetric dilution,ci j andcji
are independently determined by the same probability dis
bution. Moreover we can analyze a more general case, w
ci j andcji have an arbitrary correlation such that

Cov~ci j ,cji !5kcVar~ci j !5kcc~12c!. ~9!

In this general case, the symmetric and asymmetric diluti
correspond tokc51 and kc50, respectively. Defining the
loading level asa5p/N, and noting that Eq.~5! is written as

Ji j 5
1

N (
m51

aN

j i
mj j

m1
ci j 2c

Nc (
m51

aN

j i
mj j

m , ~10!

we can rewrite the local fieldhi for neuroni as

hi5 (
m51

aN

j i
mmm1

1

Nc (
m51

aN

(
j Þ i

N

~ci j 2c!j i
mj j

mxj2axi ,

~11!

wheremm is the overlap between the stored patternjm and
the equilibrium statex,

mm5
1

N (
i 51

N

j i
mxi . ~12!

By substituting Eq.~11! into Eq. ~2!, we can easily see
that xi can be formally represented as a function
(m51

aN j i
mmm1(1/Nc)(m51

aN ( j Þ i
N (ci j 2c)j i

mj j
mxj . Thus we

obtain

xi5F̃S (
m51

aN

j i
mmm1

1

Nc (
m51

aN

(
j Þ i

N

~ci j 2c!j i
mj j

mxj D ,

~13!

with a certain functionF̃(x) to be determined later.
Let $j i

1% be the target pattern to be retrieved. Therefo
we can assume thatm15O(1) andmm5O(1/AN)(m.1).
Then we can use the Taylor series expansion to obtain

mm5
1

N (
i 51

N

j i
mF̃S (

n51

aN

j i
nmn1

1

Nc (
n51

aN

(
j Þ i

N

~ci j 2c!j i
nj j

nxj D
5

1

N (
i 51

N

j i
mxi

~m!1Umm1
1

Nc (
i 51

N

xi8
~m!

3
1

N (
j Þ i

N

~ci j 2c!j i
mj j

mxj ~14!

for m.1, where
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xi
~m!5F̃S (

nÞm

aN

j i
nmn1

1

Nc (
nÞm

aN

(
j Þ i

N

~ci j 2c!j i
nj j

nxj D ,

~15!

xi8
~m!5F̃8S (

nÞm

aN

j i
nmn1

1

Nc (
nÞm

aN

(
j Þ i

N

~ci j 2c!j i
nj j

nxj D ,

~16!

U5
1

N (
i 51

N

xi8
~m! . ~17!

If the averages overj i
m(m.1) andcji are taken in the right-

hand side~rhs! of Eq. ~14!, the last term vanishes. To sho
this, thej i

m andcji dependences ofxj are extracted fromxj

before averaging is performed:

xj5xj
~m!~cji !1F j j

mmm1
1

Nc (
kÞ i , j

N

~cjk2c!j j
mjk

mxk

1
1

Nc (
nÞm

~cji 2c!j j
nj i

nxi

1
1

Nc
~cji 2c!j j

mj i
mxi Gxj

8~m!~cji ! , ~18!

where
tu

ha
p
ri-
ic

s-
xj
~m!~cji !5F̃S (

nÞm

aN

j j
nmn1

1

Nc (
nÞm

aN

(
kÞ i , j

N

~cjk2c!j j
njk

nxkD ,

~19!

xj
8~m!~cji !5F̃8S (

nÞm

aN

j j
nmn1

1

Nc (
nÞm

aN

(
kÞ i , j

N

~cjk2c!j j
njk

nxkD .

~20!

Substituting Eq.~18! into the r.h.s. of Eq.~14! and averaging
the resultant expressions overj i

m andcji shows that the las
term vanishes. Thus,mm can be expressed as

mm5
1

N (
i 51

N

j i
mxi

~m!1Umm

5
1

N~12U ! (
i 51

N

j i
mxi

~m! ~21!

for m.1. Similarly, by using Eq.~18!, we can show that the
second term in Eq.~11! is expressed as

1

Nc (
m51

aN

(
j Þ i

N

~ci j 2c!j i
mj j

mxj
~m!,~cji !1kc

a~12c!

c
Uxi .

~22!

Equations~21! and~22! give the following expression for
the local field:
hi5j i
1m12axi1kc

a~12c!

c
Uxi1

1

N~12U ! (
m52

aN

F̃S (
nÞm

aN

j i
nmn1

1

Nc (
nÞm

aN

(
kÞ i

N

~cik2c!j i
njk

nxkD
1

1

Nc (
m51

aN

j i
m(

j Þ i

N

~ci j 2c!j j
mF̃S (

nÞm

aN

j j
nmn1

1

Nc (
nÞm

aN

(
kÞ i , j

N

~cjk2c!j j
njk

nxkD
1

1

N~12U ! (
m52

aN

j i
m(

j Þ i

N

j j
mF̃S (

nÞm

aN

j j
nmn1

1

Nc (
nÞm

aN

(
kÞ j

N

~cjk2c!j j
njk

nxkD . ~23!
u-
ua-
Note that the second term in Eq.~23! arises from thei th term
of the summation over neurons, which results from substi
ing Eq.~21! into the ‘‘naive noise’’ term(m52

aN j i
mmm . In the

last term in Eq.~23!, we expandF̃ with respect to (cji
2c). Then the lowest order term yields a noise term that
a vanishing mean. The higher order terms can be drop
from Eq. ~23!, since they only yield vanishing means, va
ances, and cross-talk correlations with the third term, wh
is another noise term. Thus, we finally obtain

hi5j i
1m11szi1F 1

12U
1kc

12c

c GaUxi , ~24!

s25
aq

~12U !2 1
a~12c!

c
q, ~25!

where the noise terms in Eq.~23! are replaced by the Gaus
ian noise szi , with zi obeying the normal distribution
N~0,1!.
t-

s
ed

h

Finally, the results of the SCSNA for the symmetric dil
tion are summarized by the following order-parameter eq
tions:

m5K E
2`

`

DzjY~z;j!L
j

, ~26!

q5K E
2`

`

DzY~z;j!2L
j

, ~27!

U5K E
2`

`

DzzY~z;j!L
j

, ~28!

Dz[dz
1

A2p
expS 2

z2

2 D ,
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where^•••&j implies averaging over the target pattern. T
effective response functionY(z;j), or F̃(x), is obtained im-
plicitly from F(x) by solving

Y~z;j!5FS jm1sz1F 1

12U
1kc

12c

c GaUY~z;j! D .

~29!

It is remarked that the order parameterU is well defined for
nondifferential response functions in the final express
given in Eq. ~28!. The order-parameter equations for t
asymmetric dilution can be obtained simply by omitting t
c-dependent term in Eq.~29!.

Sompolinsky showed that adding symmetric noise to s
aptic connections

Ji j 5
1

N (
m51

aN

j i
mj j

m1d i j , ~30!

d i j ;NS 0,
D2

N D , d i j 5d j i , ~31!

is equivalent to diluting the connections symmetrically@15#.
We note that such an equivalence can also be proved by
SCSNA in the general cases covered by Eq.~9!, including
the asymmetric dilution case to which the conventional r
lica calculation is not applicable. In the general case,
variancesD2 of the synaptic noise equivalent to the dilutio
are found to be

D25
a~12c!

c
, ~32!

k5kc , where Cov~d i j ,d j i !5k
D2

N
, ~33!

from Eqs.~24! and ~25!.

Systematic dilution

The systematic dilution of synaptic connections can
achieved by introducing synaptic noise with an appropri
nonlinear functionf (x) @15#:

Ji j 5
Ap

N
f ~Ti j !. ~34!

Note that Ti j obeys the normal distributionN~0,1! for p
5aN→` †in the finite loading case, i.e.,p;O(1), another
treatment is needed@15,19,20#‡. If we definef (x) as

f ~x!5 H x,
0,

uxu.d
uxu<d, ~35!

the connections in the range@2d,d# are eliminated~we call
this case ‘‘bottom-cut-off dilution’’! @21#. On the other hand
if
n

-

he

-
e

e
e

f ~x!5 H x,
0,

uxu,d
uxu>d, ~36!

the connections in the ranges (2`,2d#, @d,`! are elimi-
nated~‘‘top-cut-off dilution’’ !. The cutting rate is easily ex
pressed in terms ofd : e.g.,

Rc5E
2d

d
Dx, ~37!

for the bottom-cut-off dilution. We note that for the abov
two cases

E
2`

`

Dx f~x!50, ~38!

which is assumed in the following analysis.
As a first step, we apply a naive signal-to-noise~S/N!

analysis to the nonlinear learning rule Eq.~34! in order to
estimate the signal and noise terms. Assuming that the s
$xi% with componentsxi5j i

1 is stable and thatF(u)
5sgn(u), the local fieldhi in the equilibrium$xi% is

hi5(
j Þ i

N

Ji j j j
15

1

N (
j Þ i

N

j i
1j j

1j j
1f 8~Ti j

~1!!1
Ap

N (
j Þ i

N

f ~Ti j
~1!!j j

1,

~39!

Ti j
~1!5

1

Ap
(
m52

p

j i
mj j

m . ~40!

The first term in Eq.~39!,

1

N (
j Þ i

N

j i
1j j

1j j
1f 8~Ti j

~1!!5Jj i
1, ~41!

J[E Dx f8~x!5E Dxx f~x!, ~42!

is the signal, while the second one is the noise, of which
mean and variance are

EFAp

N (
j Þ i

N

f ~Ti j
~1!!j j

1G50, ~43!

EF S Ap

N (
j Þ i

N

f ~Ti j
~1!!j j

1D 2G5a J̃ 2, ~44!

J̃ 2[E Dx„f ~x!…2, ~45!

respectively, whereE@•••# implies averaging over all of the
random memory patterns$j i

m%.
According to this naive S/N analysis, we rewrite the co

nections as
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Ji j 5
J

N (
m51

p

j i
mj j

m1FAp

N
f ~Ti j !2

J

N (
m51

p

j i
mj j

mG
5

Ap

N
$JTi j 1@ f ~Ti j !2JTi j #%. ~46!

The following derivation suggests that the residual over
mm for the first term in Eq.~46! is enhanced by a factor o
1/(12U), while any enhancement of the last part is cance
because of the subtraction. It also implies that the last
corresponds to the synaptic noise.

For the SCSNA of the nonlinear learning rule, we obta

hi5J (
m51

p

j i
mmm2aJxi1

Ap

N (
j Þ i

@ f ~Ti j !2JTi j #xj .

~47!

In the last term in Eq.~47!, the output activityxj5F(hj )
generally depends on the connectionTji . We definexj

(Tji ) by
subtractingTji dependences fromxj at the leading order:

xj5xj
~Tji !1xj

8~Tji !
Ap

N
@ f ~Tji !2Tji #xi , ~48!

where

xj
~Tji !5FS hj2

Ap

N
@ f ~Tji !2Tji #xi D , ~49!

xj
8~Tji !5F8S hj2

Ap

N
@ f ~Tji !2Tji #xi D . ~50!

Substituting Eq.~48! into Eq. ~47! gives

hi5J (
m51

p

j i
mmm2aJxi1

Ap

N (
j Þ i

@ f ~Ti j !2JTi j #xj
~Tji !

1
a

N
xi(

j Þ i
@ f ~Ti j !2JTi j #@ f ~Tji !2JTji #xj

8~Tji ! .

~51!

Then Eq.~51! and the relationxi5F(hi) indicate that the
output activity can be formally expressed as

xi5F̃S J (
m51

p

j i
mmm1

Ap

N (
j Þ i

@ f ~Ti j !2JTi j #xj
~Tji !D .

~52!

Let $j i
1% be the target pattern. We substitute Eq.~52! into

the definition of the pattern overlap and expand the resul
expression byj i

mmm (m.1), which has the order o
O(1/AN). This leads to
p

d
rt

nt

mm5
1

N (
i 51

N

j i
mxi

~m!1
1

N (
i 51

N FJmm1
1

N (
j Þ i

N

j j
mxj

~Tji ! f 8~Ti j
~m!!

2
J

N (
j Þ i

N

j j
mxj

~Tji !Gxi8
~m!

5
1

N (
i 51

N

j i
mxi

~m!1JmmU5
1

N~12JU! (
i 51

N

j i
mxi

~m! ~53!

for m.1, where

xi
~m!5F̃S J (

nÞm

p

j i
nmn1

Ap

N (
j Þ i

@ f ~Ti j
~m!!2JTi j

~m!#xj
~Tji !D ,

~54!

xi8
~m!5F̃8S J (

nÞm

p

j i
nmn1

Ap

N (
j Þ i

@ f ~Ti j
~m!!2JTi j

~m!#xj
~Tji !D ,

~55!

U5
1

N (
i 51

N

x2
8 ~m!, ~56!

Ti j
~m!5Ti j 2

1

Ap
j i

mj j
m . ~57!

Substituting Eq.~53! into Eq.~51! and averaging Eq.~51!
over j i

m (m.1) yield

hi5Jj i
1m11

Ap

N (
j Þ i

N

@ f ~Ti j !2JTi j #xj
~Tji !2aJxi

1
a

N
xi(

j Þ i
@ f ~Ti j !2JTi j #@ f ~Tji !2JTji #xj

8~Tji !

1
1

N~12JU! (
m52

p

j i
m(

j 51

N

j j
mxj

~m!

5Jj i
1m11

Ap

N (
j Þ i

N

@ f ~Ti j !2JTi j #xj
~Tji !

1F J

12JU
1~ J̃ 22J 2!GaUxi

1
1

N~12JU! (
m52

p

j i
m(

j Þ i

N

j j
mxj

~m! . ~58!

The second and last terms in the rhs of Eq.~58! yield the
Gaussian noise which has a vanishing mean. The varianc
the noise term is given by

s25F J2

~12JU!2 1 J̃ 22J2Gaq. ~59!
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Thus, after rewritingj i
1→j i and m1→m, we finally ob-

tain the following implicit relation for the effective respons
function:

Y~z;j!5FS jm1sz1F J

12UJ
1 J̃ 22J2GaUY~j;z! D ,

~60!

wherem, q, andU are given by Eqs.~26!–~28!.

Reduction in storage capacity

The equilibrium properties of the partially connected no
monotonic networks can be obtained by numerically solv
the equations for the order parameters. Accordingly, we
an additional rule, which is similar to the Maxwell rule in th
thermodynamics, to solve the effective response function
terms ofz. We do not repeat the detailed analysis here si
it can be found in Ref.@2#. The order-parameter equation
are studied for two values ofu, i.e.,u51 andu52, to com-
pare the effects of synapse dilution between different exte
of nonmonotonicity. For the latter value, the response fu
tion can be regarded approximately as a step function ow
to the fact that the distribution range of the local fields
practically limited. The choiceu51 gives the smallest pos
sible value, since the storage capacity obtained by
SCSNA for the fully connected nonmonotonic network ten
to be larger than the actual values obtained by simulati
for u,1 @10#. This discrepancy seems to imply that the S
SNA describes unstable fixed points of the nonmonoto
network for these values ofu.

When the synaptic connections are randomly eliminat
the symmetric and asymmetric dilutions yield almost iden
cal results by the SCSNA. Therefore, the following only p
sents results for asymmetric random dilution.

Figure 1~a! shows the storage capacityac of the non-
monotonic network foru51 andu52 as functions of the
cutting rateRc[12c. In both cases,ac decreases asRc is
increased. However, the reduction rate ofac is small for u
52, i.e., when the response function is regarded as a
function. On the other hand, whenu51 and the degree o
nonmonotonicity is high,ac decreases rapidly. For instanc
ac becomes the half value of the fully connected case
Rc50.3 for u51, and atRc50.6 for u52.

The values of the tolerance pattern overlapg defined in
terms of the local fieldhi as

g5
1

N (
i 51

N

j i
1sgn~hi ! ~61!

can also be easily obtained by the SCSNA and the results
shown in Fig. 1~b! as functions ofRc for the two values ofu,
when the network is maximally loaded withacN patterns.
The reduction rate ofg is also larger foru51, but the dif-
ference between the reductions for the twou values is not
very large. Since the tolerance overlap is always close
unity unlessRc'1, the quality of retrieved patterns is no
significantly influenced by the dilution of connections
both cases.

Similarly, ac is shown in Fig. 2 as a function ofRc for the
two types defined by Eqs.~35! and ~36! of the systematic
-
g
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g
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d,
-
-

ep

t

re

to

synapse dilution. The cutoff parameter is fixed atu51 in
both cases. We see that the storage capacity for the bot
cut-off dilution remains much larger than that for the rando
dilution. Indeed,ac becomes half its value for the fully con
nected case at a cutting rate as large asRc50.75. On the
other hand, the reduction inac occurs much more rapidly fo
the top-cut-off dilution than it does for the random dilutio
as expected.

To confirm the results of the SCSNA, numerical simu
tions of the retrieval dynamics of the nonmonotonic neu
network are conducted for two cases, i.e., the random
bottom-cut-off dilutions. The results are shown in Figs. 3~a!
and 3~b! for ac , m, and the tolerance overlapg, respec-
tively. ac is obtained by evaluating the loading rates
which the network succeeds to retrieve memory patte
with approximately 50% probability. A trial is regarded a

FIG. 1. SCSNA results for~a! storage capacity and~b! tolerance
pattern overlap as a function of cutting rateRc when synaptic con-
nections are diluted randomly and asymmetrically. Solid a
dashed curves are for nonmonotonic response function with cu
activity u51 andu52, respectively. Random symmetric dilutio
gives results that are almost identical to those presented here.
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successful ifg is more than 0.96 after the network evolv
into a stationary state. It is found that the results of
SCSNA forac andg are in good agreement with those of th
simulations. Relatively large discrepancies in values ofm
between the results of the analytical and numerical stu
are due to the fact that they vary significantly with the valu
of a nearac . Taking this fact into account, we can conclu
that the discrepancies are at an acceptable level.

Instability of superretrieval phase

So far, the superretrieval phase has been found only
associative memory models with nonmonotonic respo
functions. In this phase, the noise from unconden
memory patterns in the local fields disappears, and co
quently an evoked activity pattern coincides with a mem
pattern without error. In the framework of the SCSNA, t
occurrence of the superretrieval phase is indicated by
disappearance of the variances2 of the Gaussian noise in th
solution to the order-parameter equations. From Eq.~25!, we
see thatuUu→` implies that s2→0 if the varianceD2,
given in Eq.~32! and which arises from the random synap
dilution, is zero. This is indeed the case for fully connec
nonmonotonic neural networks@2,10,12#. However, forD2

Þ0, s2 never disappears for any retrieval state sinceq'1 in
the state. This implies that the superretrieval phase is
stable against random dilution.

Although s2 cannot be zero due to the noise from t
synapse dilution, the noiser from uncondensed patterns ma
still vanish. To examine this possibility, we solve the ord
parameter equations forD250 ~the fully connected case!
andD250.01 and investigate whether the parameterr disap-
pears at a certain value ofa. We fix u at 0.7, a value tha
ensures the existence of the superretrieval phase forD250.

The results are shown in Fig. 4. For the fully connec
nonmonotonic network,r disappears very rapidly whena
approaches a critical value ('0.125) from above. This indi-
cates that the superretrieval phase appears fora less than the

FIG. 2. Storage capacity obtained by the SCSNA for botto
cut-off ~solid curve! and top-cut-off~dashed curve! systematic di-
lutions.
e
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critical value. However, whenD250.01, r does not show a
singular behavior for any value ofa. Rather, the results sug
gest thatr}eka (k.0) for this value ofD2. This implies
that the superretrieval phase never occurs when a smal
finite number of connections are eliminated.

The disappearance of the superretrieval phase can als
seen by numerical simulations. To this end, the distribut
P(h) of the local fields in the retrieval states is calculated
the random dilution by numerical simulations. The resu
are shown in Figs. 5~a! and 5~b! when the cutting rateRc is
0% and 1%, respectively. The SCSNA predicts thatP(h) has
four peaks represented by the delta functions atuhu5u6a/2
whenN→` @2#. These sharp peaks are clearly seen in F
5~a! for the superretrieval states of the fully connected n
work. However, in Fig. 5~b! the peaks are significantly
smeared by the dilution of only a small number of the sy
aptic connections.

-

FIG. 3. Comparison between the SCSNA~curves! and simula-
tion ~plots! results for~a! random synaptic dilution and~b! bottom-
cut-off systematic dilution. In both figures, solid, dash-dotted, a
dashed curves show storage capacity, pattern overlap, and tole
pattern overlap, respectively, as a function ofRc .
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By using Eq.~59!, the disappearance of the superretrie
phase can be shown for a much wider class of synapse
tion. We definef (x) as

f ~x!5H x
0

xPS

xPS̄,
~62!

whereS is an arbitrary subset ofR that satisfies Eq.~38!.
With this f (x), a synaptic connection is eliminated if it
value does not lie inS. We show that the necessary cond
tion, J25 J̃2, for the occurrence of the superretrieval phase
satisfied only ifS5R. This is easily shown by noting that

J5E
S
Dx x f~x!5E

S
Dx f~x!25 J̃ 25E

S
Dx x2<1.

~63!

Therefore,

J2<J5 J̃ 2. ~64!

The equality in Eq.~64! holds only whenJ51 namely, when
S5R and neurons are fully connected. Although the abo
definition of f (x) does not include all types of synapse dil
tion ~for instance, one may cut half the connections ra
domly and the other half systematically!, the superretrieva
phase is presumably unstable to any type of synapse dilu
done at a finite cutting rate.

CONCLUSIONS

This paper has shown that the enhanced storage cap
of the associative memory model with a nonmonotonic
sponse function is considerably reduced by random diluti
of synaptic connections. The reduction rate is larger than

FIG. 4. Behavior of order parameterr is obtained by the SC-
SNA as a function of loading ratea for a fully connected nonmono
tonic neural network~solid curve! and randomly diluted one
~dashed curve!. In a fully connected network,r→0 as a→a0

'0.125 from above, which implies the appearance of a supe
trieval phase fora,a0 . Such singular behavior is not seen f
diluted network.
l
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for the conventional associative memory models with
monotonic response function. This result contrasts with
results of a similar study that suggested an oscillator ne
network of associative memory was more robust against
lution than the standard Hopfield model@22#. To retain as
large a storage capacity as possible in dilution of syna
connections, we proposed bottom-cut-off dilution, in whi
the synaptic connections are systematically eliminated
cording to the order of their magnitudes. Although other
tempts to consider robustness with respect to the dilu
exist @18,23,21#, this method of dilution is relatively simple
and significantly minimizes the loss of the nonmonoton
neural network’s excellent retrieval abilities. In both cas
however, the superretrieval phase, in which noise from
condensed memory patterns disappears in the local field

e-

FIG. 5. Numerically obtained distributions of local fieldshi at
equilibrium states for~a! fully connected and~b! 1%-diluted non-
monotonic neural networks. Values of parameters were fixed au
50.7 anda50.1, for which the fully connected neural networ
operates in the superretrieval phase.
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neurons, does not appear if a finite number of connecti
are eliminated. These results clearly show that enhancem
of the storage capacity of non-monotonic neural network
not achieved by disappearance of noise, which has alre
v.
s
nt

is
dy

been suggested by the fact that the shape of response
tions has a large influence on the extent of the superretri
phase but not on the maximum values of the storage capa
@12#.
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